MakeItFrom.com
Menu (ESC)

C71500 Copper-nickel vs. EN 1.4864 Stainless Steel

C71500 copper-nickel belongs to the copper alloys classification, while EN 1.4864 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C71500 copper-nickel and the bottom bar is EN 1.4864 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
75
Tensile Strength: Ultimate (UTS), MPa 380 to 620
650

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1240
1390
Melting Onset (Solidus), °C 1170
1340
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
13
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 5.1
5.3
Embodied Energy, MJ/kg 74
75
Embodied Water, L/kg 280
180

Common Calculations

Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 19
23
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 7.7
3.3
Thermal Shock Resistance, points 12 to 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 63.5 to 70.6
0
Iron (Fe), % 0.4 to 1.0
41.7 to 51
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 29 to 33
33 to 37
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0