MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. 50Cr-50Ni-Cb Alloy

C71520 copper-nickel belongs to the copper alloys classification, while 50Cr-50Ni-Cb alloy belongs to the otherwise unclassified metals. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is 50Cr-50Ni-Cb alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 10 to 45
5.6
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 51
84
Tensile Strength: Ultimate (UTS), MPa 370 to 570
620
Tensile Strength: Yield (Proof), MPa 140 to 430
390

Thermal Properties

Latent Heat of Fusion, J/g 230
350
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 15
15

Otherwise Unclassified Properties

Base Metal Price, % relative 40
60
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 5.0
9.2
Embodied Energy, MJ/kg 73
130
Embodied Water, L/kg 280
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
30
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
370
Stiffness to Weight: Axial, points 8.6
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 18
21
Strength to Weight: Bending, points 13 to 17
20
Thermal Shock Resistance, points 12 to 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 0
47 to 52
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
0 to 1.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0 to 0.3
Nickel (Ni), % 28 to 33
43.3 to 51.6
Niobium (Nb), % 0
1.4 to 1.7
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0