MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. R58150 Titanium

C71520 copper-nickel belongs to the copper alloys classification, while R58150 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
140
Elongation at Break, % 10 to 45
13
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 51
52
Shear Strength, MPa 250 to 340
470
Tensile Strength: Ultimate (UTS), MPa 370 to 570
770
Tensile Strength: Yield (Proof), MPa 140 to 430
550

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 260
320
Melting Completion (Liquidus), °C 1170
1760
Melting Onset (Solidus), °C 1120
1700
Specific Heat Capacity, J/kg-K 400
500
Thermal Expansion, µm/m-K 15
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
48
Density, g/cm3 8.9
5.4
Embodied Carbon, kg CO2/kg material 5.0
31
Embodied Energy, MJ/kg 73
480
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
94
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
1110
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
32
Strength to Weight: Axial, points 12 to 18
40
Strength to Weight: Bending, points 13 to 17
35
Thermal Shock Resistance, points 12 to 19
48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0 to 0.1
Copper (Cu), % 65 to 71.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.4 to 1.0
0 to 0.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 28 to 33
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.2
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
83.5 to 86
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0