MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. S33550 Stainless Steel

C71520 copper-nickel belongs to the copper alloys classification, while S33550 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is S33550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10 to 45
40
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 35 to 86
82
Shear Modulus, GPa 51
79
Shear Strength, MPa 250 to 340
470
Tensile Strength: Ultimate (UTS), MPa 370 to 570
680
Tensile Strength: Yield (Proof), MPa 140 to 430
310

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1170
1400
Melting Onset (Solidus), °C 1120
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 32
15
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
24
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
4.3
Embodied Energy, MJ/kg 73
61
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
250
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 18
24
Strength to Weight: Bending, points 13 to 17
22
Thermal Diffusivity, mm2/s 8.9
3.9
Thermal Shock Resistance, points 12 to 19
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0.040 to 0.1
Cerium (Ce), % 0
0.025 to 0.070
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
48.8 to 58.2
Lanthanum (La), % 0
0.025 to 0.070
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 28 to 33
16.5 to 20
Niobium (Nb), % 0
0.050 to 0.15
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0