MakeItFrom.com
Menu (ESC)

C71580 Copper-nickel vs. ASTM A372 Grade L Steel

C71580 copper-nickel belongs to the copper alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C71580 copper-nickel and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
350
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 40
14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Shear Strength, MPa 230
700
Tensile Strength: Ultimate (UTS), MPa 330
1160
Tensile Strength: Yield (Proof), MPa 110
1040

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
430
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 39
44
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
3.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.7
Embodied Energy, MJ/kg 74
22
Embodied Water, L/kg 280
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 47
2890
Stiffness to Weight: Axial, points 8.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
41
Strength to Weight: Bending, points 12
31
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 11
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.070
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 65.5 to 71
0
Iron (Fe), % 0 to 0.5
95.2 to 96.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 29 to 33
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.5
0