MakeItFrom.com
Menu (ESC)

C71580 Copper-nickel vs. S45500 Stainless Steel

C71580 copper-nickel belongs to the copper alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C71580 copper-nickel and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
280 to 500
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 40
3.4 to 11
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
75
Shear Strength, MPa 230
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 330
1370 to 1850
Tensile Strength: Yield (Proof), MPa 110
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 260
760
Melting Completion (Liquidus), °C 1180
1440
Melting Onset (Solidus), °C 1120
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 41
17
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
3.8
Embodied Energy, MJ/kg 74
57
Embodied Water, L/kg 280
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
45 to 190
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
48 to 65
Strength to Weight: Bending, points 12
35 to 42
Thermal Shock Resistance, points 11
48 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.070
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 65.5 to 71
1.5 to 2.5
Iron (Fe), % 0 to 0.5
71.5 to 79.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 29 to 33
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.5
0