MakeItFrom.com
Menu (ESC)

C71640 Copper-nickel vs. ASTM Grade HT Steel

C71640 copper-nickel belongs to the copper alloys classification, while ASTM grade HT steel belongs to the iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C71640 copper-nickel and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
76
Tensile Strength: Ultimate (UTS), MPa 490 to 630
500
Tensile Strength: Yield (Proof), MPa 190 to 460
270

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 260
1010
Melting Completion (Liquidus), °C 1180
1390
Melting Onset (Solidus), °C 1120
1340
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 29
12
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
31
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 5.0
5.4
Embodied Energy, MJ/kg 73
76
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 750
180
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
18
Strength to Weight: Bending, points 16 to 18
18
Thermal Diffusivity, mm2/s 8.2
3.2
Thermal Shock Resistance, points 16 to 21
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
15 to 19
Copper (Cu), % 61.7 to 67.8
0
Iron (Fe), % 1.7 to 2.3
38.2 to 51.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 1.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 29 to 32
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0