MakeItFrom.com
Menu (ESC)

C72150 Copper-nickel vs. Grade 5 Titanium

C72150 copper-nickel belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C72150 copper-nickel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 150
110
Elongation at Break, % 29
8.6 to 11
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 55
40
Shear Strength, MPa 320
600 to 710
Tensile Strength: Ultimate (UTS), MPa 490
1000 to 1190
Tensile Strength: Yield (Proof), MPa 210
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 600
330
Melting Completion (Liquidus), °C 1210
1610
Melting Onset (Solidus), °C 1250
1650
Specific Heat Capacity, J/kg-K 410
560
Thermal Conductivity, W/m-K 22
6.8
Thermal Expansion, µm/m-K 14
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 45
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 6.1
38
Embodied Energy, MJ/kg 88
610
Embodied Water, L/kg 270
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
3980 to 5880
Stiffness to Weight: Axial, points 9.1
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 15
62 to 75
Strength to Weight: Bending, points 15
50 to 56
Thermal Diffusivity, mm2/s 6.0
2.7
Thermal Shock Resistance, points 18
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.1
0 to 0.080
Copper (Cu), % 52.5 to 57
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 43 to 46
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0 to 0.4