MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. AISI 201LN Stainless Steel

C72700 copper-nickel belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 36
25 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 310 to 620
530 to 680
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
740 to 1060
Tensile Strength: Yield (Proof), MPa 580 to 1060
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 1100
1410
Melting Onset (Solidus), °C 930
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 62
38
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
310 to 1520
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 34
27 to 38
Strength to Weight: Bending, points 15 to 26
24 to 30
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 16 to 38
16 to 23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 82.1 to 86
0 to 1.0
Iron (Fe), % 0 to 0.5
67.9 to 73.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
6.4 to 7.5
Nickel (Ni), % 8.5 to 9.5
4.0 to 5.0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0