MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. ASTM A231 Spring Steel

C72700 copper-nickel belongs to the copper alloys classification, while ASTM A231 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is ASTM A231 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 620
1080
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
1790
Tensile Strength: Yield (Proof), MPa 580 to 1060
1570

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 930
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.3
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
2.0
Embodied Energy, MJ/kg 62
28
Embodied Water, L/kg 350
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
230
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
64
Strength to Weight: Bending, points 15 to 26
42
Thermal Diffusivity, mm2/s 16
14
Thermal Shock Resistance, points 16 to 38
53

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.48 to 0.53
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
96.7 to 97.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.7 to 0.9
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.5 to 6.5
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0