MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. EN 1.5503 Steel

C72700 copper-nickel belongs to the copper alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 620
270 to 320
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
400 to 520
Tensile Strength: Yield (Proof), MPa 580 to 1060
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 62
18
Embodied Water, L/kg 350
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
200 to 490
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
14 to 19
Strength to Weight: Bending, points 15 to 26
15 to 18
Thermal Diffusivity, mm2/s 16
14
Thermal Shock Resistance, points 16 to 38
12 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 82.1 to 86
0 to 0.25
Iron (Fe), % 0 to 0.5
98.4 to 99.239
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.6 to 0.8
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0