MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. EN 2.4856 Nickel

C72700 copper-nickel belongs to the copper alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 36
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
79
Shear Strength, MPa 310 to 620
570
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
880
Tensile Strength: Yield (Proof), MPa 580 to 1060
430

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1100
1480
Melting Onset (Solidus), °C 930
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 54
10
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
80
Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 4.0
14
Embodied Energy, MJ/kg 62
190
Embodied Water, L/kg 350
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
440
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 14 to 34
28
Strength to Weight: Bending, points 15 to 26
24
Thermal Diffusivity, mm2/s 16
2.7
Thermal Shock Resistance, points 16 to 38
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 82.1 to 86
0 to 0.5
Iron (Fe), % 0 to 0.5
0 to 5.0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 8.5 to 9.5
58 to 68.8
Niobium (Nb), % 0 to 0.1
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0