MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. G-CoCr28 Cobalt

C72700 copper-nickel belongs to the copper alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 4.0 to 36
6.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
83
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
560
Tensile Strength: Yield (Proof), MPa 580 to 1060
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1200
Melting Completion (Liquidus), °C 1100
1330
Melting Onset (Solidus), °C 930
1270
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
8.5
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
100
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 4.0
6.2
Embodied Energy, MJ/kg 62
84
Embodied Water, L/kg 350
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
160
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
19
Strength to Weight: Bending, points 15 to 26
19
Thermal Diffusivity, mm2/s 16
2.2
Thermal Shock Resistance, points 16 to 38
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
9.7 to 24.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 8.5 to 9.5
0 to 4.0
Niobium (Nb), % 0 to 0.1
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0