MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. Grade 5 Titanium

C72700 copper-nickel belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0 to 36
8.6 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Shear Strength, MPa 310 to 620
600 to 710
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
1000 to 1190
Tensile Strength: Yield (Proof), MPa 580 to 1060
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 1100
1610
Melting Onset (Solidus), °C 930
1650
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 54
6.8
Thermal Expansion, µm/m-K 17
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.8
4.4
Embodied Carbon, kg CO2/kg material 4.0
38
Embodied Energy, MJ/kg 62
610
Embodied Water, L/kg 350
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
3980 to 5880
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 14 to 34
62 to 75
Strength to Weight: Bending, points 15 to 26
50 to 56
Thermal Diffusivity, mm2/s 16
2.7
Thermal Shock Resistance, points 16 to 38
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 82.1 to 86
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0 to 0.4