MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. Nickel 80A

C72700 copper-nickel belongs to the copper alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 310 to 620
660
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
1040
Tensile Strength: Yield (Proof), MPa 580 to 1060
710

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1100
1360
Melting Onset (Solidus), °C 930
1310
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 4.0
9.8
Embodied Energy, MJ/kg 62
140
Embodied Water, L/kg 350
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
1300
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 14 to 34
35
Strength to Weight: Bending, points 15 to 26
27
Thermal Diffusivity, mm2/s 16
2.9
Thermal Shock Resistance, points 16 to 38
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
0 to 3.0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Nickel (Ni), % 8.5 to 9.5
69.4 to 79.7
Niobium (Nb), % 0 to 0.1
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0