MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. C11000 Copper

Both C72700 copper-nickel and C11000 copper are copper alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 4.0 to 36
1.5 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Shear Strength, MPa 310 to 620
150 to 230
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
220 to 410
Tensile Strength: Yield (Proof), MPa 580 to 1060
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 930
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 54
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
100
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
21 to 640
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 14 to 34
6.8 to 13
Strength to Weight: Bending, points 15 to 26
9.0 to 14
Thermal Diffusivity, mm2/s 16
110
Thermal Shock Resistance, points 16 to 38
8.0 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 82.1 to 86
99.9 to 100
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0 to 0.1