MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. N08020 Stainless Steel

C72700 copper-nickel belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 36
15 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 310 to 620
380 to 410
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
610 to 620
Tensile Strength: Yield (Proof), MPa 580 to 1060
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1100
1410
Melting Onset (Solidus), °C 930
1360
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 54
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
38
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 4.0
6.6
Embodied Energy, MJ/kg 62
92
Embodied Water, L/kg 350
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
180 to 440
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
21
Strength to Weight: Bending, points 15 to 26
20
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 16 to 38
15

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 82.1 to 86
3.0 to 4.0
Iron (Fe), % 0 to 0.5
29.9 to 44
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 8.5 to 9.5
32 to 38
Niobium (Nb), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0