MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. R30075 Cobalt

C72700 copper-nickel belongs to the copper alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210 to 250
Elongation at Break, % 4.0 to 36
12
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
82 to 98
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
780 to 1280
Tensile Strength: Yield (Proof), MPa 580 to 1060
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1100
1360
Melting Onset (Solidus), °C 930
1290
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 54
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.1

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 4.0
8.1
Embodied Energy, MJ/kg 62
110
Embodied Water, L/kg 350
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
560 to 1410
Stiffness to Weight: Axial, points 7.4
14 to 17
Stiffness to Weight: Bending, points 19
24 to 25
Strength to Weight: Axial, points 14 to 34
26 to 42
Strength to Weight: Bending, points 15 to 26
22 to 31
Thermal Diffusivity, mm2/s 16
3.5
Thermal Shock Resistance, points 16 to 38
21 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
58.7 to 68
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
0 to 0.75
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 8.5 to 9.5
0 to 0.5
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0