MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. ASTM A229 Spring Steel

C72800 copper-nickel belongs to the copper alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.9 to 23
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 330 to 740
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
1690 to 1890
Tensile Strength: Yield (Proof), MPa 250 to 1210
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 920
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 55
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 38
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
1.4
Embodied Energy, MJ/kg 68
19
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
3260 to 4080
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17 to 40
60 to 67
Strength to Weight: Bending, points 16 to 30
40 to 43
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 19 to 45
54 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Carbon (C), % 0
0.55 to 0.85
Copper (Cu), % 78.3 to 82.8
0
Iron (Fe), % 0 to 0.5
97.5 to 99
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.3 to 1.2
Nickel (Ni), % 9.5 to 10.5
0
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0 to 0.040
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0 to 0.0025
0 to 0.050
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0

Comparable Variants