MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. AWS E309H

C72800 copper-nickel belongs to the copper alloys classification, while AWS E309H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is AWS E309H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.9 to 23
34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
620

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 920
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 55
15
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 38
20
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
3.7
Embodied Energy, MJ/kg 68
52
Embodied Water, L/kg 360
180

Common Calculations

Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17 to 40
22
Strength to Weight: Bending, points 16 to 30
21
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 19 to 45
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Carbon (C), % 0
0.040 to 0.15
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 78.3 to 82.8
0 to 0.75
Iron (Fe), % 0 to 0.5
55.8 to 65.5
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 9.5 to 10.5
12 to 14
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0