MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. EN 1.0420 Cast Steel

C72800 copper-nickel belongs to the copper alloys classification, while EN 1.0420 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is EN 1.0420 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.9 to 23
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
460
Tensile Strength: Yield (Proof), MPa 250 to 1210
220

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 920
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 55
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 38
1.7
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.4
1.4
Embodied Energy, MJ/kg 68
18
Embodied Water, L/kg 360
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
130
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17 to 40
16
Strength to Weight: Bending, points 16 to 30
17
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 19 to 45
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Copper (Cu), % 78.3 to 82.8
0
Iron (Fe), % 0 to 0.5
99.935 to 100
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 9.5 to 10.5
0
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0 to 0.035
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.0025
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0