MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. EN AC-43500 Aluminum

C72800 copper-nickel belongs to the copper alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 3.9 to 23
4.5 to 13
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
220 to 300
Tensile Strength: Yield (Proof), MPa 250 to 1210
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 210
550
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
600
Melting Onset (Solidus), °C 920
590
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 55
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
38
Electrical Conductivity: Equal Weight (Specific), % IACS 11
130

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.8
2.6
Embodied Carbon, kg CO2/kg material 4.4
7.8
Embodied Energy, MJ/kg 68
150
Embodied Water, L/kg 360
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
130 to 200
Stiffness to Weight: Axial, points 7.4
16
Stiffness to Weight: Bending, points 19
54
Strength to Weight: Axial, points 17 to 40
24 to 33
Strength to Weight: Bending, points 16 to 30
32 to 39
Thermal Diffusivity, mm2/s 17
60
Thermal Shock Resistance, points 19 to 45
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
86.4 to 90.5
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Copper (Cu), % 78.3 to 82.8
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0.1 to 0.6
Manganese (Mn), % 0.050 to 0.3
0.4 to 0.8
Nickel (Ni), % 9.5 to 10.5
0
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.050
9.0 to 11.5
Sulfur (S), % 0 to 0.0025
0
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.070
Residuals, % 0 to 0.3
0 to 0.15