MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. Grade 28 Titanium

C72800 copper-nickel belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.9 to 23
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Shear Strength, MPa 330 to 740
420 to 590
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
690 to 980
Tensile Strength: Yield (Proof), MPa 250 to 1210
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 1080
1640
Melting Onset (Solidus), °C 920
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 55
8.3
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 38
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 4.4
37
Embodied Energy, MJ/kg 68
600
Embodied Water, L/kg 360
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
1370 to 3100
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 17 to 40
43 to 61
Strength to Weight: Bending, points 16 to 30
39 to 49
Thermal Diffusivity, mm2/s 17
3.4
Thermal Shock Resistance, points 19 to 45
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
2.5 to 3.5
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 78.3 to 82.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 9.5 to 10.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.0050
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.0025
0
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.4