MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. N10665 Nickel

C72800 copper-nickel belongs to the copper alloys classification, while N10665 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 3.9 to 23
45
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
84
Shear Strength, MPa 330 to 740
600
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
860
Tensile Strength: Yield (Proof), MPa 250 to 1210
400

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1080
1620
Melting Onset (Solidus), °C 920
1570
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 55
11
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 38
75
Density, g/cm3 8.8
9.3
Embodied Carbon, kg CO2/kg material 4.4
15
Embodied Energy, MJ/kg 68
200
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
320
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
360
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 17 to 40
26
Strength to Weight: Bending, points 16 to 30
22
Thermal Diffusivity, mm2/s 17
3.1
Thermal Shock Resistance, points 19 to 45
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 78.3 to 82.8
0
Iron (Fe), % 0 to 0.5
0 to 2.0
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 9.5 to 10.5
64.8 to 74
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0 to 0.0025
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0