MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. EN 1.4311 Stainless Steel

C72900 copper-nickel belongs to the copper alloys classification, while EN 1.4311 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is EN 1.4311 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
43
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 540 to 630
450
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
650
Tensile Strength: Yield (Proof), MPa 700 to 920
310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 210
950
Melting Completion (Liquidus), °C 1120
1420
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 29
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 39
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
3.1
Embodied Energy, MJ/kg 72
43
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
230
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
240
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27 to 34
23
Strength to Weight: Bending, points 23 to 27
21
Thermal Diffusivity, mm2/s 8.6
4.0
Thermal Shock Resistance, points 31 to 38
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
65.7 to 73.9
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Nickel (Ni), % 14.5 to 15.5
8.5 to 11.5
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0