MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. EN 1.5663 Steel

C72900 copper-nickel belongs to the copper alloys classification, while EN 1.5663 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 20
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 540 to 630
470
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
750
Tensile Strength: Yield (Proof), MPa 700 to 920
660

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 950
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 39
7.5
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 4.6
2.3
Embodied Energy, MJ/kg 72
31
Embodied Water, L/kg 360
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
1150
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
26
Strength to Weight: Bending, points 23 to 27
23
Thermal Shock Resistance, points 31 to 38
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
88.6 to 91.2
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 14.5 to 15.5
8.5 to 10
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 7.5 to 8.5
0
Vanadium (V), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0