MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. EN 1.7216 Steel

C72900 copper-nickel belongs to the copper alloys classification, while EN 1.7216 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is EN 1.7216 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 20
12 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 540 to 630
410 to 560
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
650 to 930
Tensile Strength: Yield (Proof), MPa 700 to 920
400 to 690

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 29
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 39
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
1.5
Embodied Energy, MJ/kg 72
20
Embodied Water, L/kg 360
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
430 to 1280
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
23 to 33
Strength to Weight: Bending, points 23 to 27
21 to 27
Thermal Diffusivity, mm2/s 8.6
12
Thermal Shock Resistance, points 31 to 38
19 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
97.2 to 98.4
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0.35 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0