MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. CC140C Copper

Both C72900 copper-nickel and CC140C copper are copper alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.0 to 20
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
44
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
340
Tensile Strength: Yield (Proof), MPa 700 to 920
230

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 1120
1100
Melting Onset (Solidus), °C 950
1040
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 29
310
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
77
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
78

Otherwise Unclassified Properties

Base Metal Price, % relative 39
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 4.6
2.6
Embodied Energy, MJ/kg 72
41
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
34
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
220
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 27 to 34
10
Strength to Weight: Bending, points 23 to 27
12
Thermal Diffusivity, mm2/s 8.6
89
Thermal Shock Resistance, points 31 to 38
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 74.1 to 78
98.8 to 99.6
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0