MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. N08810 Stainless Steel

C72900 copper-nickel belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 540 to 630
340
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
520
Tensile Strength: Yield (Proof), MPa 700 to 920
200

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1120
1400
Melting Onset (Solidus), °C 950
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 29
12
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 39
30
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 4.6
5.3
Embodied Energy, MJ/kg 72
76
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
100
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
18
Strength to Weight: Bending, points 23 to 27
18
Thermal Diffusivity, mm2/s 8.6
3.0
Thermal Shock Resistance, points 31 to 38
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 74.1 to 78
0 to 0.75
Iron (Fe), % 0 to 0.5
39.5 to 50.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Nickel (Ni), % 14.5 to 15.5
30 to 35
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0