MakeItFrom.com
Menu (ESC)

C75700 Nickel Silver vs. 6013 Aluminum

C75700 nickel silver belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C75700 nickel silver and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 3.2 to 22
3.4 to 22
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 350 to 370
190 to 240
Tensile Strength: Ultimate (UTS), MPa 590 to 610
310 to 410
Tensile Strength: Yield (Proof), MPa 470 to 580
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 1040
650
Melting Onset (Solidus), °C 990
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 930 to 1410
200 to 900
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 19 to 20
31 to 41
Strength to Weight: Bending, points 19
37 to 44
Thermal Diffusivity, mm2/s 12
60
Thermal Shock Resistance, points 22 to 23
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.8 to 97.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 63.5 to 66.5
0.6 to 1.1
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0.2 to 0.8
Nickel (Ni), % 11 to 13
0
Silicon (Si), % 0
0.6 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 19.2 to 25.5
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15