MakeItFrom.com
Menu (ESC)

C75700 Nickel Silver vs. S46500 Stainless Steel

C75700 nickel silver belongs to the copper alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C75700 nickel silver and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.2 to 22
2.3 to 14
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 45
75
Shear Strength, MPa 350 to 370
730 to 1120
Tensile Strength: Ultimate (UTS), MPa 590 to 610
1260 to 1930
Tensile Strength: Yield (Proof), MPa 470 to 580
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
780
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 16
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.6
3.6
Embodied Energy, MJ/kg 56
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
43 to 210
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 20
44 to 68
Strength to Weight: Bending, points 19
33 to 44
Thermal Shock Resistance, points 22 to 23
44 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 63.5 to 66.5
0
Iron (Fe), % 0 to 0.25
72.6 to 76.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 11 to 13
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.5 to 1.8
Zinc (Zn), % 19.2 to 25.5
0
Residuals, % 0 to 0.5
0