MakeItFrom.com
Menu (ESC)

C76200 Nickel Silver vs. CC498K Bronze

Both C76200 nickel silver and CC498K bronze are copper alloys. They have 64% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C76200 nickel silver and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 390 to 790
260

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1030
1000
Melting Onset (Solidus), °C 980
920
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 45
73
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
32
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 3.6
3.2
Embodied Energy, MJ/kg 57
52
Embodied Water, L/kg 310
360

Common Calculations

Stiffness to Weight: Axial, points 7.8
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 13 to 27
8.1
Strength to Weight: Bending, points 14 to 23
10
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 13 to 26
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 57 to 61
85 to 90
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0 to 0.1
1.0 to 2.0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 11 to 13.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 24.2 to 32
3.0 to 5.0
Residuals, % 0 to 0.5
0