MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN 1.5535 Steel

C81400 copper belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
11 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 370
450 to 1490
Tensile Strength: Yield (Proof), MPa 250
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 260
240 to 680
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
16 to 53
Strength to Weight: Bending, points 13
17 to 37
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 13
13 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.020 to 0.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0.6 to 1.0
0 to 0.3
Copper (Cu), % 98.4 to 99.38
0 to 0.25
Iron (Fe), % 0
97.6 to 98.9
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0