MakeItFrom.com
Menu (ESC)

C81400 Copper vs. CC494K Bronze

Both C81400 copper and CC494K bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
7.6
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 370
210
Tensile Strength: Yield (Proof), MPa 250
94

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
970
Melting Onset (Solidus), °C 1070
890
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 260
63
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
16
Electrical Conductivity: Equal Weight (Specific), % IACS 61
16

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 45
50
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
13
Resilience: Unit (Modulus of Resilience), kJ/m3 260
43
Stiffness to Weight: Axial, points 7.3
6.4
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 11
6.5
Strength to Weight: Bending, points 13
8.8
Thermal Diffusivity, mm2/s 75
19
Thermal Shock Resistance, points 13
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
78 to 87
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.5
0