MakeItFrom.com
Menu (ESC)

C81400 Copper vs. CC755S Brass

Both C81400 copper and CC755S brass are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
9.5
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 370
390
Tensile Strength: Yield (Proof), MPa 250
250

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
820
Melting Onset (Solidus), °C 1070
780
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
27
Electrical Conductivity: Equal Weight (Specific), % IACS 61
30

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
33
Resilience: Unit (Modulus of Resilience), kJ/m3 260
290
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
14
Strength to Weight: Bending, points 13
15
Thermal Diffusivity, mm2/s 75
38
Thermal Shock Resistance, points 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 0.7
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
59.5 to 61
Iron (Fe), % 0
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.8 to 38.9
Residuals, % 0 to 0.5
0