MakeItFrom.com
Menu (ESC)

C81400 Copper vs. Nickel 718

C81400 copper belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
12 to 50
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 370
930 to 1530
Tensile Strength: Yield (Proof), MPa 250
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1340
Melting Onset (Solidus), °C 1070
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.8
13
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 260
660 to 4560
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11
31 to 51
Strength to Weight: Bending, points 13
25 to 35
Thermal Diffusivity, mm2/s 75
3.0
Thermal Shock Resistance, points 13
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Beryllium (Be), % 0.020 to 0.1
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.6 to 1.0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 98.4 to 99.38
0 to 0.3
Iron (Fe), % 0
11.1 to 24.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Residuals, % 0 to 0.5
0