MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C66100 Bronze

Both C81400 copper and C66100 bronze are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
8.0 to 40
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 370
410 to 790
Tensile Strength: Yield (Proof), MPa 250
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1050
Melting Onset (Solidus), °C 1070
1000
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 260
34
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
60 to 790
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
13 to 25
Strength to Weight: Bending, points 13
14 to 22
Thermal Diffusivity, mm2/s 75
9.7
Thermal Shock Resistance, points 13
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
92 to 97
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Manganese (Mn), % 0
0 to 1.5
Silicon (Si), % 0
2.8 to 3.5
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.5