MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C72700 Copper-nickel

Both C81400 copper and C72700 copper-nickel are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
4.0 to 36
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 370
460 to 1070
Tensile Strength: Yield (Proof), MPa 250
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1100
Melting Onset (Solidus), °C 1070
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 260
54
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
11
Electrical Conductivity: Equal Weight (Specific), % IACS 61
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
4.0
Embodied Energy, MJ/kg 45
62
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1420 to 4770
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
14 to 34
Strength to Weight: Bending, points 13
15 to 26
Thermal Diffusivity, mm2/s 75
16
Thermal Shock Resistance, points 13
16 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
82.1 to 86
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3