MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C96800 Copper

Both C81400 copper and C96800 copper are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
3.4
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
46
Tensile Strength: Ultimate (UTS), MPa 370
1010
Tensile Strength: Yield (Proof), MPa 250
860

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
1120
Melting Onset (Solidus), °C 1070
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
52
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
10
Electrical Conductivity: Equal Weight (Specific), % IACS 61
10

Otherwise Unclassified Properties

Base Metal Price, % relative 33
34
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
33
Resilience: Unit (Modulus of Resilience), kJ/m3 260
3000
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
32
Strength to Weight: Bending, points 13
25
Thermal Diffusivity, mm2/s 75
15
Thermal Shock Resistance, points 13
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
87.1 to 90.5
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5