MakeItFrom.com
Menu (ESC)

C81400 Copper vs. N06455 Nickel

C81400 copper belongs to the copper alloys classification, while N06455 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 11
47
Poisson's Ratio 0.34
0.29
Rockwell B Hardness 69
90
Shear Modulus, GPa 41
82
Tensile Strength: Ultimate (UTS), MPa 370
780
Tensile Strength: Yield (Proof), MPa 250
330

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1510
Melting Onset (Solidus), °C 1070
1450
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 260
10
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
65
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
300
Resilience: Unit (Modulus of Resilience), kJ/m3 260
260
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 13
21
Thermal Diffusivity, mm2/s 75
2.7
Thermal Shock Resistance, points 13
24

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.6 to 1.0
14 to 18
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
0 to 3.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 0
58.1 to 72
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Residuals, % 0 to 0.5
0