MakeItFrom.com
Menu (ESC)

C81500 Copper vs. AISI 410Cb Stainless Steel

C81500 copper belongs to the copper alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 350
550 to 960
Tensile Strength: Yield (Proof), MPa 280
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
730
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.5
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 41
29
Embodied Water, L/kg 310
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 330
240 to 1600
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
20 to 35
Strength to Weight: Bending, points 12
19 to 28
Thermal Diffusivity, mm2/s 91
7.3
Thermal Shock Resistance, points 12
20 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0.4 to 1.5
11 to 13
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
84.5 to 89
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.050 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0