MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.4371 Stainless Steel

C81500 copper belongs to the copper alloys classification, while EN 1.4371 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
45 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 350
740 to 750
Tensile Strength: Yield (Proof), MPa 280
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1080
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
38
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 330
250 to 300
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
27
Strength to Weight: Bending, points 12
24
Thermal Diffusivity, mm2/s 91
4.0
Thermal Shock Resistance, points 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.5
16 to 17.5
Copper (Cu), % 97.4 to 99.6
0 to 1.0
Iron (Fe), % 0 to 0.1
66.7 to 74.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
6.0 to 8.0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0