MakeItFrom.com
Menu (ESC)

C81500 Copper vs. C72900 Copper-nickel

Both C81500 copper and C72900 copper-nickel are copper alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 17
6.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 350
870 to 1080
Tensile Strength: Yield (Proof), MPa 280
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1120
Melting Onset (Solidus), °C 1080
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
29
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
39
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 41
72
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 330
2030 to 3490
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
27 to 34
Strength to Weight: Bending, points 12
23 to 27
Thermal Diffusivity, mm2/s 91
8.6
Thermal Shock Resistance, points 12
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
74.1 to 78
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.020
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
7.5 to 8.5
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3