MakeItFrom.com
Menu (ESC)

C81500 Copper vs. C81400 Copper

Both C81500 copper and C81400 copper are copper alloys. Both are furnished in the heat treated (HT) condition. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 17
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 350
370
Tensile Strength: Yield (Proof), MPa 280
250

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1080
1070
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
60
Electrical Conductivity: Equal Weight (Specific), % IACS 83
61

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
36
Resilience: Unit (Modulus of Resilience), kJ/m3 330
260
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
11
Strength to Weight: Bending, points 12
13
Thermal Diffusivity, mm2/s 91
75
Thermal Shock Resistance, points 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0.4 to 1.5
0.6 to 1.0
Copper (Cu), % 97.4 to 99.6
98.4 to 99.38
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.020
0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0 to 0.5