MakeItFrom.com
Menu (ESC)

C81500 Copper vs. S31266 Stainless Steel

C81500 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 17
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
81
Tensile Strength: Ultimate (UTS), MPa 350
860
Tensile Strength: Yield (Proof), MPa 280
470

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 320
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
6.5
Embodied Energy, MJ/kg 41
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
290
Resilience: Unit (Modulus of Resilience), kJ/m3 330
540
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
29
Strength to Weight: Bending, points 12
24
Thermal Diffusivity, mm2/s 91
3.1
Thermal Shock Resistance, points 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.5
23 to 25
Copper (Cu), % 97.4 to 99.6
1.0 to 2.5
Iron (Fe), % 0 to 0.1
34.1 to 46
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0