MakeItFrom.com
Menu (ESC)

C82000 Copper vs. ACI-ASTM CN7M Steel

C82000 copper belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
44
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 350 to 690
480
Tensile Strength: Yield (Proof), MPa 140 to 520
200

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 970
1450
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 46
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 60
32
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 5.0
5.6
Embodied Energy, MJ/kg 77
78
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
170
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
110
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
17
Strength to Weight: Bending, points 12 to 20
17
Thermal Diffusivity, mm2/s 76
5.6
Thermal Shock Resistance, points 12 to 24
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
19 to 22
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
3.0 to 4.0
Iron (Fe), % 0 to 0.1
37.4 to 48.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0