MakeItFrom.com
Menu (ESC)

C82000 Copper vs. AISI 316 Stainless Steel

C82000 copper belongs to the copper alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
8.0 to 55
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 55 to 95
80
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 350 to 690
520 to 1180
Tensile Strength: Yield (Proof), MPa 140 to 520
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
590
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
3.9
Embodied Energy, MJ/kg 77
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
130 to 1820
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 22
18 to 41
Strength to Weight: Bending, points 12 to 20
18 to 31
Thermal Diffusivity, mm2/s 76
4.1
Thermal Shock Resistance, points 12 to 24
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
16 to 18
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
62 to 72
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0