MakeItFrom.com
Menu (ESC)

C82000 Copper vs. EN 1.3549 Stainless Steel

C82000 copper belongs to the copper alloys classification, while EN 1.3549 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is EN 1.3549 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 350 to 690
730

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 970
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.6
Embodied Energy, MJ/kg 77
37
Embodied Water, L/kg 320
130

Common Calculations

Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 22
27
Strength to Weight: Bending, points 12 to 20
24
Thermal Diffusivity, mm2/s 76
5.6
Thermal Shock Resistance, points 12 to 24
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0 to 0.1
17 to 19
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
77.5 to 82
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0.070 to 0.12
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0