MakeItFrom.com
Menu (ESC)

C82000 Copper vs. C82500 Copper

Both C82000 copper and C82500 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 20
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
45
Tensile Strength: Ultimate (UTS), MPa 350 to 690
550 to 1100
Tensile Strength: Yield (Proof), MPa 140 to 520
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 220
240
Maximum Temperature: Mechanical, °C 220
280
Melting Completion (Liquidus), °C 1090
980
Melting Onset (Solidus), °C 970
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
20
Electrical Conductivity: Equal Weight (Specific), % IACS 46
21

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 5.0
10
Embodied Energy, MJ/kg 77
160
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
400 to 4000
Stiffness to Weight: Axial, points 7.5
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 22
18 to 35
Strength to Weight: Bending, points 12 to 20
17 to 27
Thermal Diffusivity, mm2/s 76
38
Thermal Shock Resistance, points 12 to 24
19 to 38

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.15
Beryllium (Be), % 0.45 to 0.8
1.9 to 2.3
Chromium (Cr), % 0 to 0.1
0 to 0.1
Cobalt (Co), % 2.2 to 2.7
0.15 to 0.7
Copper (Cu), % 95.2 to 97.4
95.3 to 97.8
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.020
0 to 0.020
Nickel (Ni), % 0 to 0.2
0 to 0.2
Silicon (Si), % 0 to 0.15
0.2 to 0.35
Tin (Sn), % 0 to 0.1
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.5

Comparable Variants