MakeItFrom.com
Menu (ESC)

C82200 Copper vs. ASTM Grade LCB Steel

C82200 copper belongs to the copper alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 390 to 660
540
Tensile Strength: Yield (Proof), MPa 210 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 74
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
200
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
19
Strength to Weight: Bending, points 13 to 19
19
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 14 to 23
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.3
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
97 to 100
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.5
0 to 1.0